

AARHUS UNIVERSITET

Software Engineering and Architecture

Networking 101

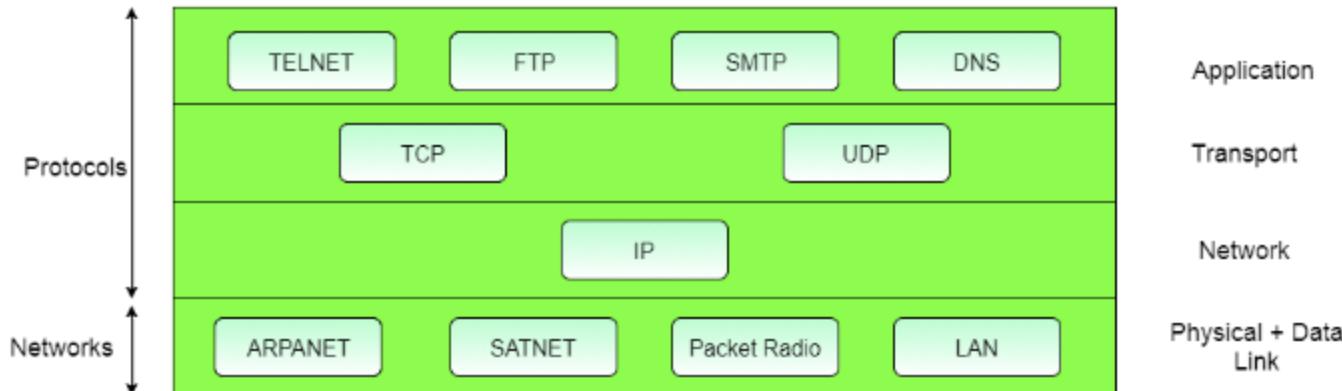
- Networking - not a curriculum issue in SWEA...
 - ... it is next semester in another course
- But...
 - You see it everywhere
 - And you need some 'Network for dummies' for our Broker...

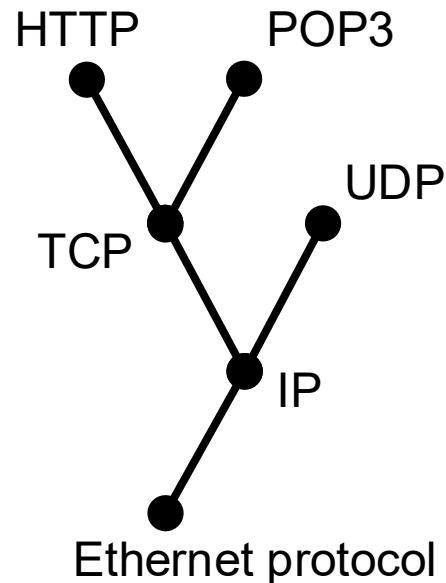
- ... in CS is basically two or more machines connected by electrical wires that allows us to send signals between the machines...

- My first exposure:

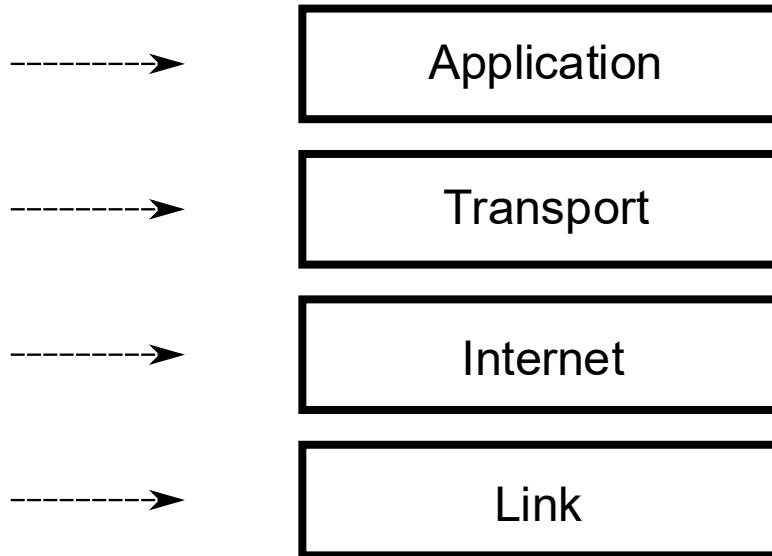
RS232

A Network


on Z80 CPUs

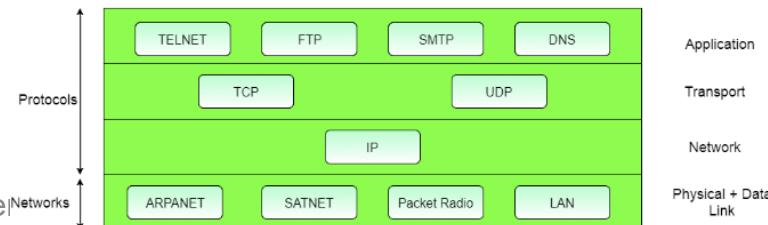


- Today's web:


TCP/IP over Ethernet

- Transmission Control Protocol and Internet Protocol
 - By the US Department of Defence (DARPA)
- Key Idea
 - Segment transmission into Packets ("Datagrams")
 - Layered architecture, each with specific responsibilities (roles!)

TCP/IP - model



By Jsoon eu (talk) - I (Jsoon eu (talk)) created this work entirely by myself., CC BY-SA 3.0, <https://en.wikipedia.org/w/index.php?curid=29962617>

- Another but similar model

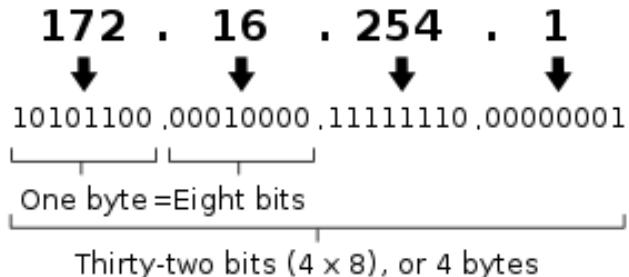
OSI Model			
	Layer	Protocol data unit (PDU)	Function ^[3]
Host layers	7. Application	Data	High-level APIs, including resource sharing, remote file access
	6. Presentation		Translation of data between a networking service and an application; including character encoding, data compression and encryption/decryption
	5. Session		Managing communication sessions, i.e. continuous exchange of information in the form of multiple back-and-forth transmissions between two nodes
	4. Transport	Segment, Datagram	Reliable transmission of data segments between points on a network, including segmentation, acknowledgement and multiplexing
Media layers	3. Network	Packet	Structuring and managing a multi-node network, including addressing, routing and traffic control
	2. Data link	Frame	Reliable transmission of data frames between two nodes connected by a physical layer
	1. Physical	Symbol	Transmission and reception of raw bit streams over a physical medium

- Transport layer
 - TCP Reliable, ordered, error-checked data delivery
 - Transmission Control Protocol
 - Network / Internet Layer
 - IP Relaying datagrams across networks
 - Internet protocol
 - Physical + Data Link Layer
 - 802.3 Ethernet Hardware and cables
 - 802.11 WiFi Cables gone

Internet Protocol

IP: Send datagram

- Defines the terminology that we use and it pops up even at the software level
- *Every computer on the network has an address*
 - Type 'ifconfig'/'ipconfig' to find yours


```
d:\proj\Book>ipconfig

Windows IP Configuration

Ethernet adapter Ethernet:

  Connection-specific DNS Suffix  . : st.client.au.dk
  Link-local IPv6 Address . . . . . : fe80::9c07:4b59:f478:f9c%4
  IPv4 Address. . . . . : 10.17.103.50
  Subnet Mask . . . . . : 255.255.255.0
  Default Gateway . . . . . : 10.17.103.1
```

An IPv4 address (dotted-decimal notation)

- Some ranges are reserved
 - 10.*.*.* , 172.16.*.* , 192.168.*.* are private networks
 - 127.0.0.1 is *localhost* = myself

- So given an IP (like 91.221.196.224) you uniquely identify a computer
- The OS of that computer expose 64K **ports**
 - Also predefined port numbers
 - 7: echo ('ping')
 - 20: ftp
 - 22: ssh
 - **80: HTTP**
 - **443: HTTPS**
- Thus
 - **91.221.196.224:80** is the HTTP port of a specific computer
 - If port 80 is active it is probably a web server

Think: port =
dueslag/"postkasse"

- On Linux, all ports below 1024 are reserved for ‘root’
 - Only *superuser* (administrator) can use these...
- Above that, it is ‘free game’ to assign/use a port, but you may interfere with other programs that have picked one...

4000	Yes	Yes	<i>Diablo II</i> game	Unofficial
5000–5500	No	Yes	<i>League of Legends</i> , a multiplayer online battle arena video game ^[188]	Unofficial

Datagram

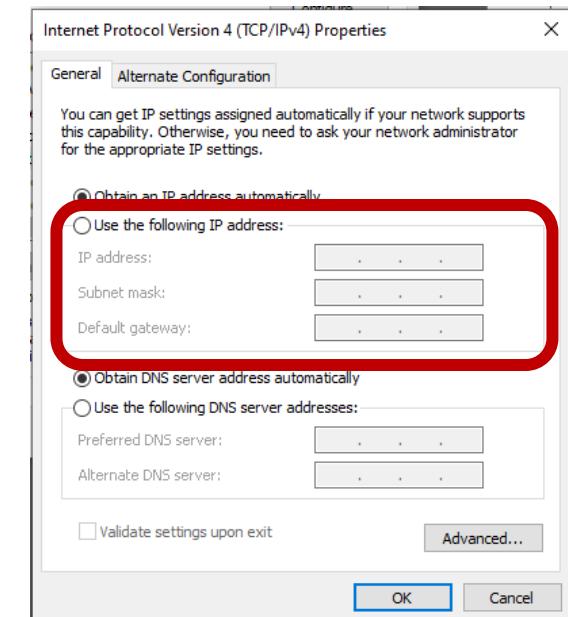
- So, for node A and node B to communicate some data
 - Say, a request for a web page, and the server reply
- A creates a request
 - N datagrams (the data segmented into packet size)
 - Each datagram contains
 - Part # i ("packet i") of the full data
 - Destination IP address Who is to receive?
 - Source IP address Who should have the reply?
- B creates a reply
 - Of course the same ☺

- Port 7 is reserved for ‘ping’
 - A classic availability pattern: ‘ping/echo’
 - Verify that a given machine is currently turned on
- I have a computer running ‘www.baerbak.com’

```
d:\work>ping www.baerbak.com
```

```
Pinging baerbak.com [91.221.196.224] with 32 bytes of data:  
Reply from 91.221.196.224: bytes=32 time=8ms TTL=56  
Reply from 91.221.196.224: bytes=32 time=9ms TTL=56  
Reply from 91.221.196.224: bytes=32 time=9ms TTL=56  
Reply from 91.221.196.224: bytes=32 time=9ms TTL=56
```

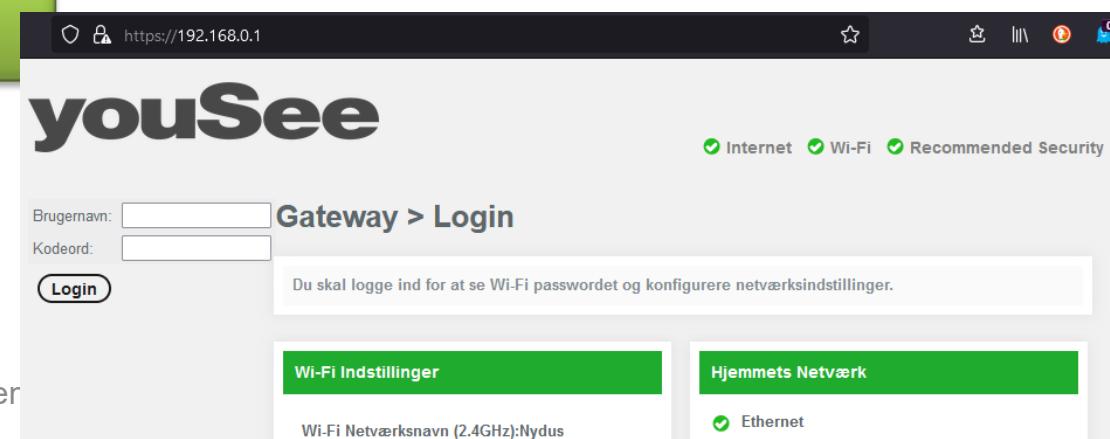
```
Ping statistics for 91.221.196.224:  
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),  
Approximate round trip times in milli-seconds:  
Minimum = 8ms, Maximum = 9ms, Average = 8ms
```


Will send datagram on
port 7 and print round
trip time

```
d:\work>ping www.baerbak.com
```

```
Pinging baerbak.com [77.111.240.173] with 32 bytes of data:  
Reply from 77.111.240.173: bytes=32 time=7ms TTL=52  
Reply from 77.111.240.173: bytes=32 time=7ms TTL=52  
Reply from 77.111.240.173: bytes=32 time=8ms TTL=52  
Reply from 77.111.240.173: bytes=32 time=8ms TTL=52
```

```
Ping statistics for 77.111.240.173:  
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),  
Approximate round trip times in milli-seconds:  
Minimum = 7ms, Maximum = 8ms, Average = 7ms
```


- *So how did your machine get that IP address?*
- Either *static IP* (never used except...)
 - You assign an IP directly on the machine!
 - (and hope no other on the network *has the same address!*)
- Or *dynamic IP*
 - DHCP – dynamic host configuration protocol
 - Broadcast a “help – I need an address”
 - DHCP server will assign one and give it
 - Usually your router at home
 - At CS it is a dedicated server machine

- On my Windows machine at home...
 - ipconfig /all

```
Ethernet adapter Ethernet:  
  
  Connection-specific DNS Suffix . . . . . : home  
  Description . . . . . : Realtek PCIe GbE Family Controller  
  Physical Address. . . . . : 4C-ED-FB-68-10-59  
  DHCP Enabled. . . . . : Yes  
  Autoconfiguration Enabled . . . . . : Yes  
  Link-local IPv6 Address . . . . . : fe80::70bc:3f19:e6a5:e02b%17(PREFERRED)  
  IPv4 Address. . . . . : 192.168.0.226(PREFERRED)  
  Subnet Mask . . . . . : 255.255.255.0  
  Lease Obtained. . . . . : 3. november 2023 07:39:48  
  Lease Expires . . . . . : 3. november 2023 12:05:54  
  Default Gateway . . . . . : 192.168.0.1  
  DHCP Server . . . . . : 192.168.0.1  
  DHCPv6 Client DUID. . . . . : 00-01-00-01-24-91-73-D9-4C-ED-FB-68-10-59  
  DNS Servers . . . . . : 192.168.0.1  
  NetBIOS over Tcpip. . . . . : Enabled
```

Which is the IP of my router...

https://192.168.0.1

youSee

Brugernavn: **Gateway > Login**

Kodeord:

Login

Du skal logge ind for at se Wi-Fi passwordet og konfigurere netværksindstillinger.

Wi-Fi Indstiller

Wi-Fi Netværksnavn (2.4GHz):Nydus

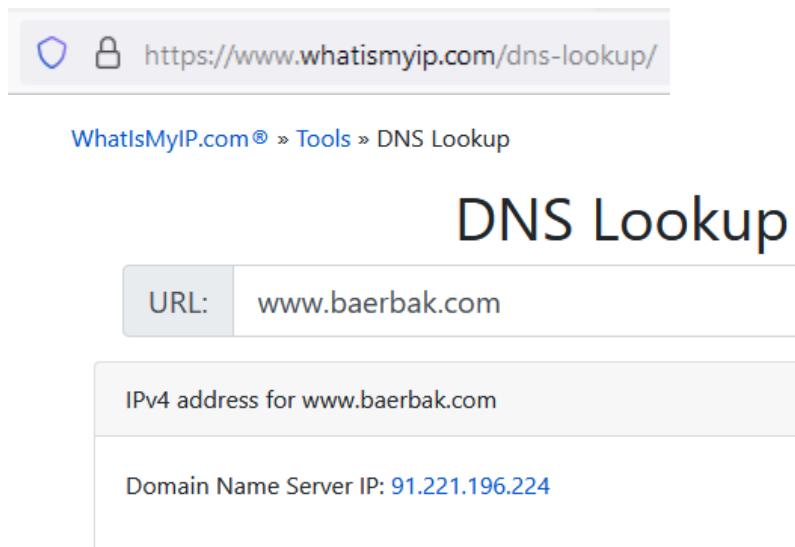
Hjemmets Netværk

Ethernet

- On my Windows machine at my AU office
 - ipconfig /all

Ethernet adapter Ethernet:

And here at AU...


```
Prefix . . . . . : st.client.au.dk
. . . . . : Realtek USB GbE Family Controller
. . . . . : F8-0D-AC-CC-87-62
DHCP Enabled. . . . . : Yes
Autoconfiguration Enabled . . . . . : Yes
Link-local IPv6 Address . . . . . : fe80::69b3:515f:405e:2775%3(Preferred)
IPv4 Address. . . . . : 10.17.104.152(Preferred)
Subnet Mask . . . . . : 255.255.255.0
Lease Obtained. . . . . : 1. november 2024 12:02:48
Lease Expires . . . . . : 1. november 2024 15:33:09
Default Gateway . . . . . : 10.17.104.1
DHCP Server . . . . . : 10.83.16.53
DHCPv6 IAID . . . . . : 110947504
DHCPv6 Client DUID. . . . . : 00-01-00-01-2C-F7-59-9D-C8-E2-65-20-B2-DC
DNS Servers . . . . . : 10.83.252.137
NetBIOS over Tcpip. . . . . : Enabled
```


Domain Name System

IP addresses are a bit hard to remember, right?

- Who can remember 87.238.248.136 ???
- DNS (Domain Name System) are *Name Services*
 - Computers that translate names into IP addresses

https://www.whatismyip.com/dns-lookup/

WhatIsMyIP.com® » Tools » DNS Lookup

DNS Lookup

URL: www.baerbak.com

IPv4 address for www.baerbak.com

Domain Name Server IP: 91.221.196.224

```
d:\pro>ping www.baerbak.com
Pinging baerbak.com [91.221.196.224] with 32 bytes of data:
Reply from 91.221.196.224: bytes=32 time=12ms TTL=59
Reply from 91.221.196.224: bytes=32 time=11ms TTL=59
Reply from 91.221.196.224: bytes=32 time=11ms TTL=59
Reply from 91.221.196.224: bytes=32 time=11ms TTL=59

Ping statistics for 91.221.196.224:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
    Approximate round trip times in milli-seconds:
        Minimum = 11ms, Maximum = 12ms, Average = 11ms
```

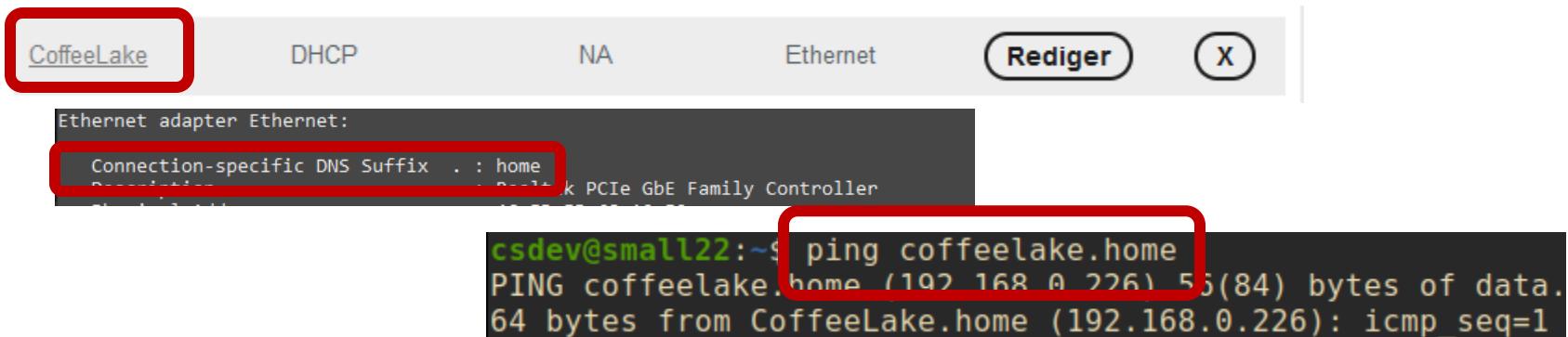
- Any computer has its own name
 - Normally you give it a name when installing
- On Linux you may change it by editing a few files


```
^Cdev@m1:~/proj/frsproject/hello-spark$ cat /etc/hostname
m1
dev@m1:~/proj/frsproject/hello-spark$ cat /etc/hosts
127.0.0.1      localhost
127.0.1.1      m1

# The following lines are desirable for IPv6 capable hosts
::1      ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
```

- **Localhost** is 127.0.0.1 which is the IP address of the computer itself! The name of it is ‘localhost’

Your Own DNS

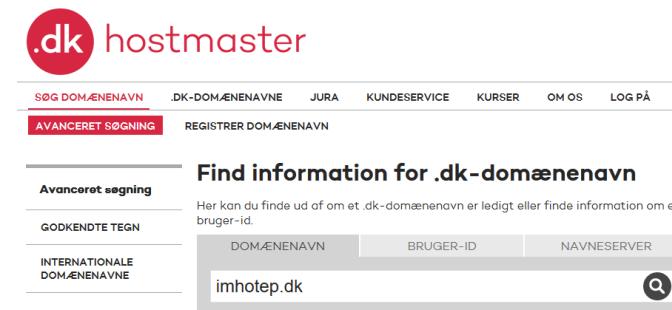
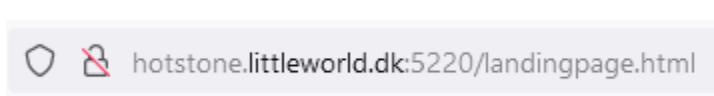

- You can actually maintain your own DNS by editing the *hosts* file on Linux
 - Do not ☺ - *it only works on my machine!*


```
^Cdev@m1:~/proj/frsproject/hello-spark$ cat /etc/hostname
m1
dev@m1:~/proj/frsproject/hello-spark$ cat /etc/hosts
127.0.0.1      localhost
127.0.1.1      m1

# The following lines are desirable for IPv6 capable hosts
::1      ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
```

- At my home I have a **WiFi Router**, supplied by my internet provider. It creates a *local network with local names*

The screenshot shows a network configuration interface with the following elements:



- A top bar with tabs: **CoffeeLake** (highlighted with a red box), **DHCP**, **NA**, **Ethernet**, **Rediger** (highlighted with a red box), and a close button **X**.
- A section for the **Ethernet adapter Ethernet:**
- Details for the connection:
 - Connection-specific DNS Suffix . : home** (highlighted with a red box)
 - Description Intel PRO/1000 MT Desktop PCI Express Gigabit Ethernet Controller**
 - Driver Version 2.3.1.1000**
- A terminal window showing the command **ping coffeelake.home** (highlighted with a red box) and its output:

```
csdev@small22:~$ ping coffeelake.home
PING coffeelake.home (192.168.0.226) 55(84) bytes of data.
64 bytes from CoffeeLake.home (192.168.0.226): icmp seq=1
```

- Of course, only computers on *this* network can access each other by their names
 - Not visible on the ‘full internet’

- But what if I want to expose a node on the full internet?
- So – how do I get a **global domain name**?
- For '.dk' domains **DK-Hostmaster** keeps track of all Danish domains

- It costs money
 - ~50 Dkr pr year
 - I own **littleworld.dk**, **imhotep.dk**, and **baerbak.dk**

Find information for .dk-domænenavn
Her kan du finde ud af om et .dk-domænenavn er ledigt eller finde information om et bruger-id.

DOMÆNENAVN	BRUGER-ID	NAVNESERVER
imhotep.dk		

imhotep.dk	
Status	Aktivt
Oprettet	30. maj 2006
IDN	imhotep.dk
Registrant	
Bruger-id	IS282-DK
Navn	imhotep
Adresse	v/Henrik Bærbak Christensen

Now: punktum.dk

- For other domains, you need a ‘registrar’ that handles global registration for you
- (From 2025, you also need that for .dk domains)

Global DNS

baerbak.com

Updated 1 second ago

Domain Information

Domain: baerbak.com
Registrar: CSL Computer Service Langenbach GmbH d/b/a joker.com
Registered On: 2009-05-05
Expires On: 2024-05-05
Updated On: 2022-05-17
Status: clientTransferProhibited
Name Servers: ns01.one.com
ns02.one.com

Registrant Contact

Organization: Imhotep
Country: DK
Email: <https://csl-registrar.com/contact/baerbak.com/owner>

Name Servers

- But you only *register* the domain, you need a Name Server to handle the actual lookup
 - My web sites are hosted by *one.com*, and they provide the name servers
- Exercise
 - Why do you think there are *two* name servers listed ?

baerbak.com Updated 1 second ago

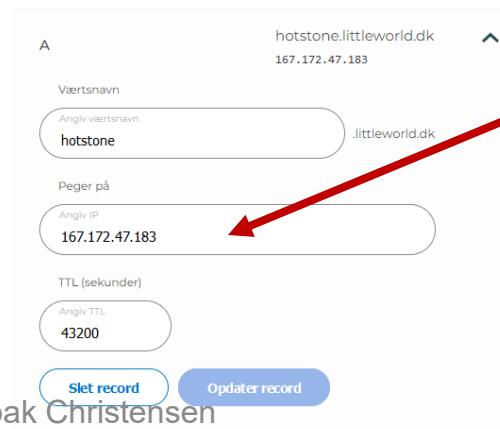
Domain Information	
Domain:	baerbak.com
Registrar:	CSL Computer Service Langenbach GmbH d/b/a joker.com
Registered On:	2009-05-05
Expires On:	2024-05-05
Updated On:	2022-05-17

Name Servers: ns01.one.com
ns02.one.com

Registrant Contact	
Organization:	Imhotep
Country:	DK
Email:	https://csl-registrar.com/contact/baerbak.com/owner

Create a New Name

- Scenario: *I want to provide a HotStone game server*
- I do
 - Rent a virtual machine on Hetzner (Serverfarm in Helsinki)
 - So I get an IP address of that machine
- I log into my ‘one.com’ account, go to the ‘DNS Setting’ pane, and create an ‘A record’ with that IP address


littleworld.dk

DNS

Viderestil DNS records Navneservere

DNS Administration

DNS (Domain Name System) er en protokol til at videresende et domæne eller blot dele af det. Dit domæne kan for eksempel blive videresendt til en anden server, IP adresse eller et andet domæne. [Læs mere](#)

A

hotstone.littleworld.dk
167.172.47.183

Værtsnavn
Angiv værtsnavn
hotstone

Peger på
Angiv IP
167.172.47.183

TTL (sekunder)
Angiv TTL
43200

Slet record

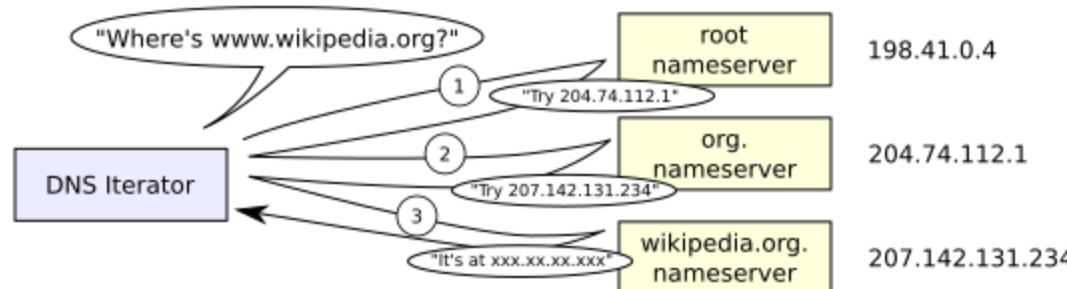
Opdater record

Henrik Bærbæk Christensen

- Organizations, like CS, maintain their own local network
 - And thus needs a DNS for the **local** machines
 - Which are ‘visible’ on the local net, but not on the global (=inter)net
- One of my machines is m1-dev on st.lab.au.dk network

```
d:\proj\Book>ping m1-dev.st.lab.au.dk

Pinging m1-dev.st.lab.au.dk [10.28.27.17] with 32 bytes of data:
Reply from 10.28.27.17: bytes=32 time=1ms TTL=58
Reply from 10.28.27.17: bytes=32 time=1ms TTL=58
```

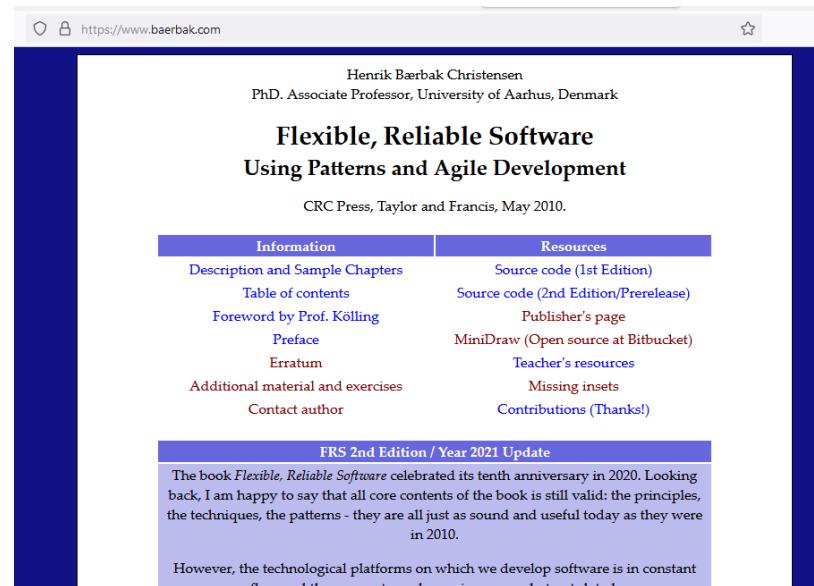


AARHUS UNIVERSITET

Resolving Names

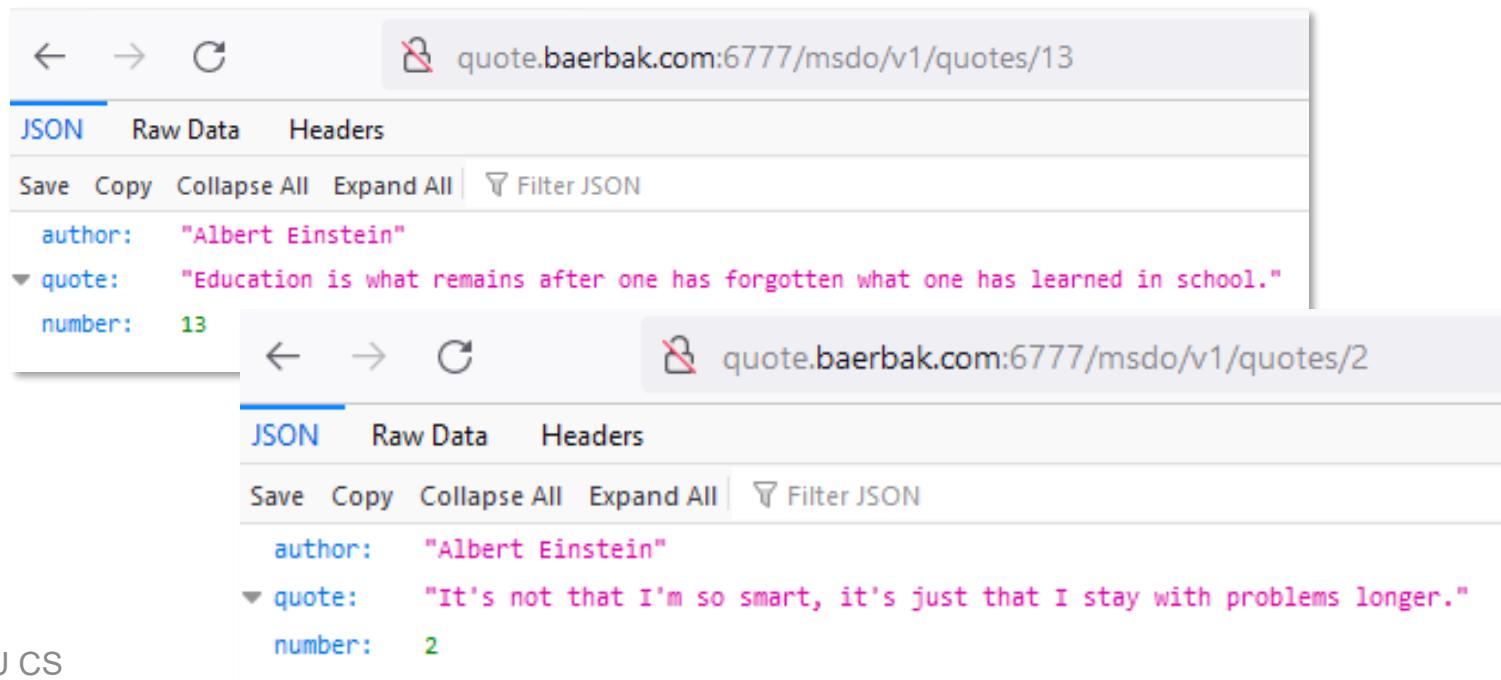
Name Resolution

- Any node on the IP network has a (local) Name Server registered, the one to contact *first*
 - Windows: ‘nslookup’
 - Linux: ‘nslookup’ ☺
- Algorithm: "If I do not know, I know who knows"
 - Picks the name apart **right to left!**
 - org *before* wikipedia *before* www

```
d:\proj\Book>nslookup  
Default Server: Unknown  
Address: 10.83.252.137
```



You may trace the lookup path

- Windows 11


```
D:\proj\SWEA-E25\web>tracert hotstone.littleworld.dk
Tracing route to hotstone.littleworld.dk [157.180.79.190]
over a maximum of 30 hops:
1  1 ms    1 ms    1 ms  mygateway.home [192.168.0.1]
2  20 ms   14 ms   15 ms  10.116.18.1
3  9 ms    9 ms    9 ms  ae13-200.aegnqe10.dk.ip.tdc.net [176.22.62.74]
4  20 ms   20 ms   24 ms  ae10-0.asd3nqp1.nl.ip.tdc.net [83.88.1.219]
5  21 ms   19 ms   20 ms  amsix-gw.hetzner.com [80.249.209.55]
6  19 ms   19 ms   19 ms  core51.ams.hetzner.com [213.239.203.238]
7  30 ms   32 ms   32 ms  core52.sto.hetzner.com [213.239.252.238]
8  37 ms   38 ms   36 ms  core32.hell.hetzner.com [213.239.254.65]
9  38 ms   37 ms   38 ms  spine15.cloud1.hell.hetzner.com [213.239.228.6]
10 37 ms   54 ms   43 ms  spine3.cloud1.hell.hetzner.com [213.239.228.30]
11  *       *       *       Request timed out.
12 37 ms   36 ms   38 ms  15509.your-cloud.host [95.216.134.199]
13 39 ms   38 ms   38 ms  static.190.79.180.157.clients.your-server.de [157.180.79.190]

Trace complete.
```

- **baerbak.com** will become
 - <https://www.baerbak.com>
- Firefox calls DNS server
 - Translate it into IP address
- Firefox will then send a http request to port 80 on that ip address (actually 443 as it is the ‘secure http’ port)
- ... which will return a HTML document

- I start my ‘quote service’ on a DigitalOcean machine in Amsterdam, on port 6777, assign ‘quote.baerbak.com’ to that IP, and can now get famous quotes in JSON format:

The image shows two screenshots of a browser window displaying JSON data. The top screenshot shows the URL `quote.baerbak.com:6777/msdo/v1/quotes/13`. The JSON response is:

```
author: "Albert Einstein"
quote: "Education is what remains after one has forgotten what one has learned in school."
number: 13
```

The bottom screenshot shows the URL `quote.baerbak.com:6777/msdo/v1/quotes/2`. The JSON response is:

```
author: "Albert Einstein"
quote: "It's not that I'm so smart, it's just that I stay with problems longer."
number: 2
```


Time To Live

- But but – what happens when IPs change then?
 - All the caches will send requests to the *old* node?
- The principle of **delegation** is used in DNS
 - I move my HotStone server to another provider – and get a new IP address
 - The DNS system has to adapt: **TTL: TimeToLive** here 12h

Peger på

Angiv IP
167.172.47.183

TTL (sekunder)

Angiv TTL
43200

Slet record **Opdater record**

Takes up to 12 hours
world-wide

- DNS and IP are of course ‘public knowledge’, so there are quite a few fun services to lookup data out there.

```
D:\proj\SWEA-E25\web>ping hotstone.littleworld.dk
Pinging hotstone.littleworld.dk [157.180.79.190] with
```


IP Details For: 157.180.79.190

Decimal:	2645839806
Hostname:	static.190.79.180.157.clients.your-server.de
ASN:	24940
ISP:	Hetzner Online GmbH
Services:	Data Center/Transit
Country:	Finland
State/Region:	Uusimaa
City:	Helsinki
Latitude:	60.1695 (60° 10' 10.28" N)
Longitude:	24.9355 (24° 56' 7.62" E)

[CLICK TO CHECK BLACKLIST STATUS](#)

- To send a datagram, you have to know the *address* of the receiver
- Every node in an IP network has an **IP address**
 - IP address xxx.xxx.xxx.xxx (or IPv6)
- Nodes for a wider audience use **DNS** servers to assign a **hostname** to a specific IP address
 - www.dr.dk instead of xxx.xxx.xxx.xxx
- Every node has **65.536 ports**
 - Quite a few below 1024 are reserved

TCP

The last piece of the puzzle

Actually, rather hidden

- IP splits data into packets/datagrams and sends them
 - But they get lost!
 - They become garbled
 - They arrive out-of-order
- TCP introduce **reliability**
 - Get packet 1, 2, 3, 5, ~~7~~, 6...
 - Request packet 4 again, and 7 as it was garbled
 - Forward the full data by putting segments in correct order

Network Address Translation

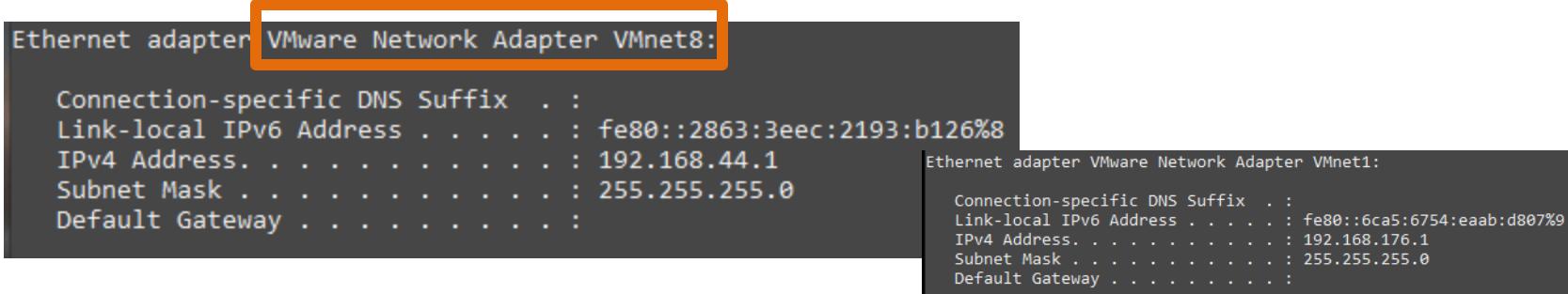
Weird Behaviour Warning

Segmenting Networks

- Organizations, projects, homes create their own LANs.
 - Security, convenience, performance
- Example:
 - My home router that assigns each connected node an IP in the 192.168.x.x space
 - But at any time there are thousands of machines with IP 192.168.1.38
 - How does ‘www.imhotep.dk’ know which computer to return the HTML document to, then???

```
Ethernet adapter Ethernet:  
Connection-specific DNS Suffix . :  
Link-local IPv6 Address . . . . . : fe80::48e:8e59:9c35  
IPv4 Address . . . . . : 192.168.1.38  
Subnet Mask . . . . . : 255.255.255.0  
Default Gateway . . . . . : 192.168.1.1
```

All IP packets have a source IP address and a destination IP address. Typically packets passing from the private network to the public network will have their source address modified, while packets passing from the public network back to the private network will have their destination address modified. To avoid ambiguity in how replies are translated, further modifications to the packets are required. The vast bulk of Internet traffic uses [Transmission Control Protocol \(TCP\)](#) or [User Datagram Protocol \(UDP\)](#). For these protocols the [port numbers](#) are changed so that the combination of IP address and port information on the returned packet can be unambiguously mapped to the corresponding private network destination. [RFC 2663](#) uses the term *network address and port translation (NAPT)* for this type of NAT. Other names include *port address translation (PAT)*, *IP masquerading*, *NAT overload* and *many-to-one NAT*. This is the most common type of NAT and has become synonymous with the term "NAT" in common usage.


- So NAT in my router simply change IP:port of the datagrams so the web server returns to the router instead; once it has been received, the router forwards to the local node

Implications

- NAT makes networking behave ‘weird’:
 - *I can see you, but you cannot see me!*
 - My home computer can see the full internet, but no computer on the internet can see mine!
 - They can only see my ISP’s (Internet Service Provider) computer, which is the only one that can see my router, which is the only one who can see my computer!

Implications

- VMWare Player does NAT between your host machine and the course VM, Mxx, you are running
 - It installs additional networks on the host, my Win machine


```
Ethernet adapter VMware Network Adapter VMnet8:
Connection-specific DNS Suffix . :
Link-local IPv6 Address . . . . . : fe80::2863:Beec:2193:b126%8
IPv4 Address . . . . . : 192.168.44.1
Subnet Mask . . . . . : 255.255.255.0
Default Gateway . . . . . :

Ethernet adapter VMware Network Adapter VMnet1:
Connection-specific DNS Suffix . :
Link-local IPv6 Address . . . . . : fe80::6ca5:6754:eaab:d807%9
IPv4 Address . . . . . : 192.168.176.1
Subnet Mask . . . . . : 255.255.255.0
Default Gateway . . . . . :
```

- Therefore your host has multiple IP addresses, on multiple networks, used by multiple machines
 - Meaning host and VM can communicate on the 192.168.*.* network.
Remember to use that for local testing!

So, in my VM

- Running my VM I can see it is also on the 192.168.*.* network

- So they can talk using these IP addresses

– Win 10 -> m101

```
csdev@m101:~$ ifconfig
ens33: <NO-SILOWS, BROADCAST>, RUNNING, MULTICAST> mtu 1500
      inet 192.168.44.131 netmask 255.255.255.0 broadcast 192.168.44.255
      ether 00:0c:29:e6:18:a4 prefixlen 64 scopeid 0x20<link>
          ether 00:0c:29:e6:18:a4 txqueuelen 1000 (Ethernet)
          RX packets 452596 bytes 680056387 (680.0 MB)
          RX errors 0 dropped 0 overruns 0 frame 0
          TX packets 71364 bytes 4344351 (4.3 MB)
          TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```



```
d:\proj>ping 192.168.44.131
Pinging 192.168.44.131 with 32 bytes of data:
Reply from 192.168.44.131: bytes=32 time<1ms TTL=64
Reply from 192.168.44.131: bytes=32 time<1ms TTL=64
```

- m101 -> Win 10


```
csdev@m101:~$ ping 192.168.176.1
PING 192.168.176.1 (192.168.176.1) 56(84) bytes of data.
64 bytes from 192.168.176.1: icmp_seq=1 ttl=128 time=1.18 ms
```

Example

- Starting my HotStone server on my m1 VM

```
ens33: flags=4163<UP,BROADCAST  
        inet 192.168.109.129  
csdev@m1:~/proj/hotstone$ gradle fullserver  
> Task :solution:fullserver  
2022-11-04T11:07:27.950+01:00 [INFO] hotstone.solution.server.main.MultipleGameServerHttp :: method=constructor, port=5220, eventSourceDB=null  
2022-11-04T11:07:27.955+01:00 [INFO] hotstone.solution.lobby.GameLobby :: method=constructor, context=starting
```

- Then I can contact it on that IP address from the host:

- On EduRoam which most of you are on with your laptops when here at the department...
- ... things may easily not work!
- ... because EduRoam maintains **firewalls** which often deny any communication on non-standard ports
 - Only on port 80, 443, 22, and some others
 - And subject to changes all the time!

Handy commands

- Debug 101
 - *Can my computer see the other computer???*
 - ‘ping www.imhotep.dk’
 - ‘ping 192.168.1.37’
- What is my IP?
 - Windows: ipconfig / linux: ifconfig

*If not installed, issue
sudo apt install net-tools
to get it ☺*

Ethernet adapter Ethernet:

```
Connection-specific DNS Suffix . :  
Link-local IPv6 Address . . . . . : fe80::48e:8e59:9c35:9806%18  
IPv4 Address . . . . . : 192.168.1.38  
Subnet Mask . . . . . : 255.255.255.0  
Default Gateway . . . . . : 192.168.1.1
```

```
ens33      Link encap:Ethernet  HWaddr 00:0c:29:58:f5:c2  
           inet  addr:192.168.85.128  Bcast:192.168.85.255  Mask:255.255.255.0  
           inet6 addr: fe80::20c:29ff:fe58:f5c2/64  Scope:Link  
           UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1  
           RX packets:83079  errors:0  dropped:0  overruns:0  frame:0  
           TX packets:36489  errors:0  dropped:0  overruns:0  carrier:0  
           collisions:0  txqueuelen:1000  
           RX bytes:94975896 (94.9 MB)  TX bytes:4403632 (4.4 MB)
```

- The Distributed course will go into the more details
 - I think ☺
- Lot of concepts, but not core curriculum in SWEA
- However, you will bump into some of these issues in the mandatory project on distribution...
 - Client and Server need to talk – using their IP addresses and ports...